1. Balance the following nuclear reactions and identify the missing nuclide or nuclear particle. (A periodic table is provided in the handbook.)
e.g. ${ }_{7}^{14} \mathrm{~N}+{ }_{0}^{1} \mathrm{n} \quad \rightarrow{ }_{6}^{14} \mathrm{C}+{ }_{1}^{1} \mathrm{p}$
(a) ${ }_{10}^{20} \mathrm{Ne}+{ }_{0}^{1} \mathrm{n} \quad \rightarrow{ }_{9}^{20} \mathrm{~F}+$?
(b) ${ }_{7}^{15} \mathrm{~N}+{ }_{1}^{1} \mathrm{p} \rightarrow$? $+{ }_{0}^{1} \mathrm{n}$
(c) ${ }_{8}^{16} \mathrm{O}+{ }_{1}^{1} \mathrm{p} \rightarrow{ }_{7}^{13} \mathrm{~N}+$?
2. ${ }_{9}^{19} \mathrm{~F}$ is a stable nuclide. One of the following isotopes of fluorine undergoes radioactive decay by β^{-}emission and one decays by β^{+}emission. Predict which is which and write balanced equations for the decay reactions.
(a) ${ }_{9}^{18} \mathrm{~F}$
(b) ${ }_{9}^{20} \mathrm{~F}$
3. Calculate the radiocarbon age of a sample whose ${ }^{14} \mathrm{C}$ activity is 0.344 of a modern standard.
4. Calculate the molar activity of tritium (in Curie), given its half-life of 12.26 years. [$1 \mathrm{Ci}=3.70 \times 10^{10}$ disintegrations per second.]
5. Arrange the following elements in order of increasing ionization energy:

$$
\mathrm{Ne}, \mathrm{Na}, \mathrm{C}, \mathrm{Mg}, \mathrm{~N}, \mathrm{~F}
$$

6. Identify three elements whose atomic radii are similar to that of Li.
7. Identify the largest and smallest of all neutral, stable atoms.
